首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61116篇
  免费   9775篇
  国内免费   4107篇
电工技术   2790篇
技术理论   1篇
综合类   5484篇
化学工业   14811篇
金属工艺   7379篇
机械仪表   3776篇
建筑科学   1715篇
矿业工程   1386篇
能源动力   1362篇
轻工业   2026篇
水利工程   482篇
石油天然气   1101篇
武器工业   565篇
无线电   5478篇
一般工业技术   14234篇
冶金工业   3228篇
原子能技术   485篇
自动化技术   8695篇
  2024年   139篇
  2023年   1383篇
  2022年   1497篇
  2021年   2350篇
  2020年   2409篇
  2019年   2440篇
  2018年   2222篇
  2017年   2630篇
  2016年   2777篇
  2015年   3146篇
  2014年   3676篇
  2013年   4266篇
  2012年   4162篇
  2011年   4290篇
  2010年   3353篇
  2009年   3630篇
  2008年   3206篇
  2007年   3883篇
  2006年   3532篇
  2005年   3180篇
  2004年   2635篇
  2003年   2470篇
  2002年   1944篇
  2001年   1653篇
  2000年   1414篇
  1999年   1123篇
  1998年   960篇
  1997年   732篇
  1996年   703篇
  1995年   618篇
  1994年   530篇
  1993年   403篇
  1992年   345篇
  1991年   290篇
  1990年   290篇
  1989年   222篇
  1988年   116篇
  1987年   67篇
  1986年   47篇
  1985年   49篇
  1984年   42篇
  1983年   44篇
  1982年   28篇
  1981年   17篇
  1980年   9篇
  1979年   8篇
  1978年   9篇
  1977年   11篇
  1975年   8篇
  1951年   20篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
31.
The direct-synthesis of conductive PbS quantum dot (QD) ink is facile, scalable, and low-cost, boosting the future commercialization of optoelectronics based on colloidal QDs. However, manipulating the QD matrix structures still is a challenge, which limits the corresponding QD solar cell performance. Here, for the first time a coordination-engineering strategy to finely adjust the matrix thickness around the QDs is presented, in which halogen salts are introduced into the reaction to convert the excessive insulating lead iodide into soluble iodoplumbate species. As a result, the obtained QD film exhibits shrunk insulating shells, leading to higher charge carrier transport and superior surface passivation compared to the control devices. A significantly improved power-conversion efficiency from 10.52% to 12.12% can be achieved after the matrix engineering. Therefore, the work shows high significance in promoting the practical application of directly synthesized PbS QD inks in large-area low-cost optoelectronic devices.  相似文献   
32.
In both developing and industrialized/developed countries, various hazardous/toxic environmental pollutants are entering water bodies from organic and inorganic compounds (heavy metals and specifically dyes). The global population is growing whereas the accessibility of clean, potable and safe drinking water is decreasing, leading to world deterioration in human health and limitation of agricultural and/or economic development. Treatment of water/wastewater (mainly industrial water) via catalytic reduction/degradation of environmental pollutants is extremely critical and is a major concern/issue for public health. Light and/or laser ablation induced photocatalytic processes have attracted much attention during recent years for water treatment due to their good (photo)catalytic efficiencies in the reduction/degradation of organic/inorganic pollutants. Pulsed laser ablation (PLA) is a rather novel catalyst fabrication approach for the generation of nanostructures with special morphologies (nanoparticles (NPs), nanocrystals, nanocomposites, nanowires, etc.) and different compositions (metals, alloys, oxides, core-shell, etc.). Laser ablation in liquid (LAL) is generally considered a quickly growing approach for the synthesis and modification of nanomaterials for practical applications in diverse fields. LAL-synthesized nanomaterials have been identified as attractive nanocatalysts or valuable photocatalysts in (photo)catalytic reduction/degradation reactions. In this review, the laser ablation/irradiation strategies based on LAL are systematically described and the applications of LAL synthesized metal/metal oxide nanocatalysts with highly controlled nanostructures in the degradation/reduction of organic/inorganic water pollutants are highlighted along with their degradation/reduction mechanisms.  相似文献   
33.
《Ceramics International》2022,48(22):33280-33287
Numerous studies have focused on the preparation of carbon fibers (CFs)-based high-efficiency microwave absorbers with reasonable structural design and surface morphology control, which simultaneously meet the required impedance matching and loss ability. Here, CFs@NiS/Ni3S4@MoS2 (CNNM) with core-sheath structure was prepared through several simple hydrothermal reactions. The morphology of the as-prepared CNNM nanocomposite is controlled by the amount of added sodium molybdate dihydrate, which causes the difference in minimum reflection loss (RL) and effective attenuation bandwidth among the samples. For the microwave absorbing performance, the minimum RL is ?18 dB and the effective attenuation bandwidth is 8.7 GHz, which appear at the thickness of 2.8 mm and cover most of the X- and Ku-bands. The excellent absorbing performance is attributed to optimized impedance matching and enhanced polarization loss. These results originate from the transition metal sulfides, which not only effectively prevent the skin effect by decreasing the conductivity of CFs but also increase interfaces and flaws, leading to interface polarization and dipole polarization losses.  相似文献   
34.
《Ceramics International》2022,48(1):525-539
C/C-BN composites and Cf/BN/PyC composites exhibiting different structures for pyrolytic carbon (PyC) and boron nitride (BN) were studied comparatively to determine their oxidation behavior. This study used five types of samples. Porous C/C composites were modified with silane coupling agents (APS) and then fully impregnated in water-based slurry of hexagonal boron nitride (h-BN); the resulting C/C-BN preforms were densified by depositing PyC by chemical vapor infiltration (CVI), resulting in three types of C/C-BN composites. The other two Cf/BN/PyC composites were obtained by depositing a BN interphase and PyC in carbon fiber preforms by CVI; one was treated with heat, and the other was not. This study was focused on determining how the PyC deposition mechanism, morphology and pore structure were affected by the method of BN introduction. In the 600–900 °C temperature range, the Cf/BN/PyC composites and C/C composites underwent oxidation via a mixed diffusion/reaction mode. The C/C-BN composites had a different pore structure due to the formation of nodules comprising h-BN particles; both interfacial debonding and cracking were reduced, resulting in higher resistance to gas diffusion, lower oxidation rate and larger activation energy (Ea) in the temperature range 600–800 °C. In addition, the mechanism for oxidation of C/C-BN composites gradually exhibited diffusion control at 800–900 °C because the formation of h-BN oxidation products healed the defects. The oxidation mechanism was more dependent on pore structure than on BN structure or content.  相似文献   
35.
《Ceramics International》2022,48(15):21638-21647
Municipal solid waste incineration (MSWI) fly ash (FA) is a typical hazardous waste due to its high contents of toxic heavy metals, and hence its disposal has attracted global concern. In this work, it was recycled into environmental-friendly CaO–Al2O3–SiO2 system glass-ceramics via adding coal fly ash (CFA) and waste glass (WG). The effects of CaO/SiO2 ratios and sintering temperatures on the crystalline phases, morphologies, mechanical and chemical properties, heavy metals leaching and potential ecological risks of glass-ceramics were investigated. The results showed that wollastonite (CaSiO3), anorthite (CaAl2Si2O8) and gehlenite (Ca2Al2SiO7) were the dominant crystals in the glass-ceramics, which were not affected by CaO/SiO2 ratio and sintering temperature. The compressive strength increased, while the Vickers hardness and microhardness decreased as increasing the sintering temperatures from 850 to 1050 °C, which reached their maximum values of 660.69 MPa, 6.14 GPa, and 7.43 GPa, respectively. However, the increase of CaO/SiO2 ratio resulted into the reduction of the three mechanical parameters. As varying CaO/SiO2 ratio from 0.48 to 0.86, the maximum compressive strength, Vickers hardness and microhardness were 611.80 MPa, 5.43 GPa, and 6.56 GPa, respectively. Besides, all the glass-ceramics exhibited high alkali resistance of >97%. The extremely low heavy metals leaching concentrations and low potential ecological risk of glass-ceramics further revealed its environmentally friendly property and potential application feasibility.  相似文献   
36.
《Ceramics International》2022,48(2):1451-1483
Metal/ceramic composites are in high demand in several industries because of their superior thermo-mechanical properties. Among various composite types, the interpenetrating phase composites (IPCs) with percolating metallic and ceramic phases offer manifold benefits, such as a good combination of strength, toughness, and stiffness, very good thermal properties, excellent wear resistance, as well as the flexibility of microstructure and processing route selection, etc. The fabrication of metal/ceramic IPCs typically involves two steps - i) processing of an open porous ceramic body, and ii) infiltration of metallic melt in the pores to fabricate the IPC. Although significant progress has been made in recent years for developing both porous ceramics and melt infiltration methods, to the best of the knowledge of the authors, no review article summarizing all the aspects of processing and properties of IPCs has been published till date. This review article is aimed at filling this gap. Starting with a brief introduction about the current status and applications of IPCs, the various processing routes for fabricating open porous ceramic preforms and melt infiltration techniques have been discussed. Subsequently, the data available for various important physical, mechanical, and thermal properties for IPCs have been critically analyzed to thoroughly understand their dependence on various structural and processing parameters. To compare the properties of IPCs with other relevant materials, seven different Ashby material property maps have been used, and the domains for IPCs have been created in them. For each map, the concept of material indices has been employed to critically discuss how IPCs perform in relation to other material classes for various optimum design conditions. Finally, a detailed future outlook for further research on IPCs has been provided.  相似文献   
37.
《Ceramics International》2022,48(6):7344-7361
Zirconium diboride (ZrB2) and silicon carbide (SiC) composites have long been of interest since it was observed that ZrB2 improved the thermal shock resistance of SiC. However, processing of these materials can be difficult due to high and different sintering temperatures and differences in the thermodynamic stability of each material. ZrB2–SiC composites have been processed in a variety of ways including hot-pressing, spark-plasma sintering, reactive melt infiltration, pack cementation, chemical vapor deposition, chemical vapor infiltration, stereolithography, direct ink writing, selective laser sintering, electron beam melting, and binder jet additive manufacturing. Each manufacturing method has its own pros and cons. This review serves to summarize more than 60 years of research and provide a coherent resource for the variety of methods and advancements in development of ZrB2–SiC composites.  相似文献   
38.
《Ceramics International》2022,48(7):9527-9533
In this work, a magnetodielectric coupling observed in barium titanate–cobalt ferrite composites synthesized using high-energy ball milling assisted via a thermal treatment is discussed. Vibrating sample magnetometry and dielectric spectroscopy showed that multiferroic composites possess both ferromagnetic and dielectric behaviors inherited from the parent ferromagnetic cobalt ferrite and ferroelectric barium titanate phases. The magnetocapacitance (up to 35%) recorded for x = 0.3, (1-x)BaTiO3–xCoFe2O4, can be attributed to the spin-dependent filtering mechanism. The composite with the aforementioned composition exhibited a homogeneous matrix–particle composite microstructure, which was achieved via high-energy ball milling during the mixing stage.  相似文献   
39.
离子印迹聚合物吸附材料对模板离子具有强识别能力,对其可实现高选择吸附,因而离子印迹技术常用于制备高选择性吸附材料。但传统方法制备的离子印迹吸附材料,因识别位点容易被包埋导致其吸附容量小、吸附-脱附速率低,而表面离子印迹技术则是采用模板离子和聚合单体直接在载体表面或附近区域构筑选择性识别位点,所有活性位点均暴露,从而有效地解决了上述问题。本文从技术原理与合成原料、制备工艺方法以及载体材料类型等方面对表面印迹聚合物吸附材料近期研究进展情况进行了概述。针对相关研究现状,从载体材料、功能单体、目标离子等角度分析和讨论了表面离子印迹聚合物吸附材料当前发展中的不足及其所面临的挑战,并对表面离子印迹技术发展趋势和前景进行了展望。  相似文献   
40.
《Ceramics International》2022,48(3):3536-3543
We investigated the optical and electrical properties of Ta2O5/Ag/Ta2O5 films as functions of the thicknesses of the Ta2O5 and Ag layers. It was found that with an increase in the thicknesses of the Ta2O5 and Ag layers from 10 to 40 nm and from 12 to 24 nm, respectively, the sheet resistance, carrier concentration, electron mobility, and resistivity of the Ta2O5/Ag/Ta2O5 film varied from 2.02 to 8.95 Ω/sq, 5.74 × 1021 to 2.92 × 1022 cm–3, from 13.21 to 24.07 cm2/V·s, and from 8.89 × 10-6 to 8.24 × 10-5 Ω cm, respectively. The average transmittance (Tav) of the multilayer samples ranged from 57.18% to 93.99%, and it depended on the Ta2O5 and Ag layer thicknesses. The highest Tav of 93.99% was observed for the film with 35 nm thick Ta2O5 and 18 nm thick Ag layers, and the peak Haacke's figure of merit (157.04 × 10–3 Ω–1) was obtained for 20 nm thick Ta2O5 and 21 nm thick Ag layers. Ta2O5 (100 nm) and Ta2O5/Ag/Ta2O5 (20 nm/21 nm/20 nm) samples had optical bandgaps of 4.70 and 4.45 eV, respectively. Film Wizard simulations were conducted to understand the dependence of the transmittance of the multilayer on the thicknesses of the Ta2O5 and Ag layers, and phasor analyses were performed to determine how the transmittance of the Ta2O5/Ag/Ta2O5 (20 nm/21 nm/20 nm) film depended on the Ta2O5 layer's thickness.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号